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The effect of various co-solvents on silicon carbide growth from solutions is sequentially
analyzed within computational approach. The information related to the problem is col-
lected from available literature and thoroughly treated. Boundary between liquid and
solid state of solutions (liquidus line) is found from phase diagrams of 11 binary systems

and is accounted for in calculating the carbon solubility at temperature and composition
varying in a wide range. Thermophysical and transport properties are collected for pre-
liminary estimation and comparison of growth rates. Their saturation with co-solvent
percentage is predicted. Two-dimensional problem is set and first computations are
demonstrated. It is shown that addition of lanthanum to the silicon melt gives a signifi-
cantly higher growth rate than that of chromium.
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1. INTRODUCTION

The superior physical properties of silicon carbide (SiC)
provide an equivalent replacement of silicon for high power
and high-temperature electronics. These advantages allow
us to hope that the industry could completely replace silicon
in devices by SiC in the future. SiC technologies have made
tremendous strides in last years, with a variety of encourag-
ing device and circuit demonstrations.

Some effective techniques for producing the SiC crys-
tal of high quality have been developed. Among them, SiC
top-seeded solution growth (TSSG) method turns out to be
a worthy opponent to such methods as the physical vapor
transport (PVT) and the high temperature vapor deposition
(HTCVD). However, when using the pure silicon melt,
only a low growth rate can be achieved due to low carbon
solubility. To enhance it, several co-solvents are added re-
cently. Comprehensive review of the topic is presented in
Ref. [1]. Let us emphasize main features here. Solution
growth is a standard technology for preparing compound

semiconductors [2]. For solution growth of SiC single
crystal by TSSG, the Si source stems from highly pure Si
melt while the graphite crucible serves dual purposes:
heater and C solute source. SiC single crystals are more
likely to grow under the ideal stoichiometric ratio when
the ratio of C and Si is close to 1, indicating a lower defect
density [3]. The driving force of the growth is the C super-
saturation that is dominated by temperature gradient and
solution system. There is a generally accepted viewpoint
that the higher the C supersaturation, the faster the growth
rate, while low C supersaturation produces a smooth sur-
face [4]. Doping transition metal elements or rare-earth el-
ements not only effectively lower the growth temperature
but seems to be the only way to drastically improve carbon
solubility in Si melt [1]. To date, 4-inch SiC substrates
with a thickness of 15 mm have been grown by TSSG
method, while substrates of 6 inches and larger are still in
progress. Multi-parameters of the solution growth includ-
ing meniscus, solvent design, flow control etc. make high-
quality single crystal growth possible.
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Note that the appearance of defects, the unintentional
doping of crystals by fluxes and other parameters of as-
grown crystals are shelved within the present paper. To
investigate them properly, a specific tool should be used.
The present paper sets a more limited problem to reveal
and to compare the effect of such co-solvents as Cr, Fe,
Co, Ni, Y, Al La, Ce, Pr, Nd and Sc only on numerical
values of the carbon solubility and the SiC growth rate de-
pending on process conditions. Uniformity of the growth
rate distribution on the seed surface is planned to analyze
within 2D approach for estimating the morphology in fur-
ther parts of the paper. To solve the limited problem, the
thermodynamics of non-ideal solutions is applied for cal-
culating the carbon solubility and the SiC growth rate is
evaluated from the carbon flux onto the seed. In addition,
the author does not aim here to reproduce all available ex-
periments due to the fact that none of models can do it.
Nevertheless, the collation of various liquid alloys within
a reasonable approach can help one to catch main trends
and features of the considered technology.

2. PRELIMINARY ANALYSIS

2.1. Liquidus lines of binary system Si-Me, Me = Cr,
Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd and Sc

Silicon melt is known to be a source of Si-atoms involved
in SiC TSSG and acts as a basic solvent with melting point
of 1685 K [1]. Obviously, the process using the pure sili-
con should be run at temperatures higher than this thresh-
old value. The temperature limitations for solutions addi-
tionally depend on co-solvent percentage and are
represented as phase diagrams calculated from measure-
ments and separating the liquid and solid states. Therefore,
before any analysis it is useful to get exhaustive infor-
mation on when the silicon diluted with one of co-solvents
or their composition remains liquid.

Solid-liquid phase diagrams of binary solutions listed
above were found in available literature [5—15] and
treated. As a result, the corresponding liquidus lines were
plotted in Fig. 1 to compare them against each other and
to clear up the applicability of one or another solution.
As seen from the plots, the threshold temperatures vary
nonmonotonically and differently with mole fraction of
considered co-solvents or fluxes. Melting point of all so-
lutions with doping up to 20-30 mol.% becomes lower
than that of the pure silicon. After that, with the excep-
tion of Si-Al (solid blue) and Si-Ni (long dashed red),
liquidus temperatures sharply rise especially in the case
of lanthanides, Y and Sc. It means that the temperature
should be elevated significantly for keeping the solution
in liquid state at the co-solvent fraction varying from 30
to 70 mol.%
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Fig. 1. Liquidus-solidus of Si-Me alloys, where Me = Cr, Fe, Co,
Ni, Y, Al, La, Ce, Pr, Nd, Sc. Regions of liquid phase are located
higher than liquidus curves.

Note that being close to each other, Si-lanthanide liqui-
dus curves (purple) reach a maximum somewhat lower
than 2100 K at =~ 35 mol.% and decrease to 900—-1100 K
at ~ 90 mol.%. Most severe temperatures of 2100-2400 K
are observed for Si-Y (dashed red) and Si-Sc (solid black)
at 50% Y and 60% Sc, respectively, going down to 1600 K
at =~ 90 mol.%.

Si-Cr liquidus (solid red) increases between melting
points of solvents with weekly pronounced local maxi-
mums and minimums. Ni-doping provides the threshold of
1300 K at 40-55% Ni. Si-Fe (dashed dot dot red) and Si-
Co (dashed dot red) systems show similar dependences
without some apparent features.

Unlike others, only Si-Al system exhibits the classical
behavior with the single eutectics at =~ 87% Al.

The information above is collected in Table 1 and can
be used for a preliminary selection of co-solvents, provid-
ing the liquid binary solutions. Moreover, the temperature
limitations are further accounted for in calculating the car-
bon solubility and the SiC growth rate.

2.2. Thermodynamic background

For describing the SiC crystal growth from multi-compo-
nent solutions, one should formulate the boundary condi-
tions containing the carbon solubility. To evaluate it at
temperature and solvents composition varying in a wide
range, the well-known relations of thermodynamics are
applied [16]. Assuming that the SiC crystal dipped into Si-
Me solution partly dissolves producing the carbon through
the chemical reaction

Si(liquid) + C( ) <:> Sic(.wlid) ’ (1)

dissolved
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Table 1. Lists of liquid binary alloys vs temperature and composition.

Temperature, K

1700-1800 1800-1900 1900-2000 2000-2100 2100-2200 2200-2300
0.1-0.2 All co-solvents  All co-solvents  All co-solvents  All co-solvents  All co-solvents  All co-solvents
0.2-0.3 Fe, Co, Ni, Al, All co-solvents  All co-solvents  All co-solvents  All co-solvents  All co-solvents

= Sc
QE) 0.3-0.4 Fe, Co, Ni, Al Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al, All co-solvents  All co-solvents
§ Cr Cr, Sc Cr, Sc, Y, La,
% Ce, Pr
2 10405 Fe, Ni, Al Fe, Ni, Al, Co Fe, Ni, Al, Co, Fe, Ni, Al, Co, Fe, Ni, Al, Co, All co-solvents
3 Cr Cr, La, Ce, Pr, Cr, La, Ce, Pr,
3 Nd Nd, Sc
; 0.5-0.6 Fe, Ni, Al Fe, Ni, Al, Co Fe, Ni, Al, Co, Fe, Ni, Al, Co, Fe, Ni, Al, Co, Fe, Ni, Al, Co,
i>’ La, Ce La, Ce, Pr, Nd, La, Ce, Pr, Nd, La, Ce, Pr, Nd,
% Cr Cr Cr,Y
S | 0.6-0.7 Fe, Co, Ni, Al Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al,
3 La, Ce La, Ce, Pr, Nd La, Ce, Pr, Nd La, Ce, Pr, Nd, La, Ce, Pr, Nd,
.5 Cr Cr,Y
E? 0.7-0.8 Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al, Fe, Co, Ni, Al,
“:: La, Ce, Pr, Nd La, Ce, Pr, Nd La, Ce, Pr, Nd La, Ce, Pr, Nd La, Ce, Pr, Nd, La, Ce, Pr, Nd,
o Cr,Y Cr,Y
= 0.8-0.9 Co, Ni, Al, La, Co, Ni, Al, La, Co, Ni, Al, La, Co, Ni, Al, La, All co-solvents  All co-solvents

Ce, Pr, Nd Ce, Pr, Nd, Fe Ce, Pr, Nd, Fe, Ce, Pr, Nd, Fe,

Y, Sc Y, Sc

one can write the following equilibrium condition in com-
mon case

RTIn(ygxg)+pg + RTIn(yexe ) +pd = pige, 2)

) are the activity coefficient, the

equilibrium mole fraction and the standard Gibbs’ en-
ergy of i-th component, respectively; R is the gas con-
stant in J-kmole™-K~!, T is the temperature in Kelvin. To
find the activity coefficients, the thermodynamics of
non-ideal solutions [16] considers the total Gibbs’ en-
ergy describing the state of a system as a whole:

where y,, x;, and p

N,
G=Yx|RTIn(y.x,)+n" |, 3)
i=1

where N, is the total number of components including the
carbon. Then the deviation from ideal solution, the excess
Gibbs’ energy AG“, can be extracted from Eq. (3) as

N,
AG® =) x,RTIny,. 4)
i=1

Eq. (4) gives the relation of activity coefficients, y,,
and AG”. Normally, the latter is approximated as

Ne-1 Ne
AG” =Y > AGT,, (5)
i=1 j=i+l

where AG/”, is the excess Gibbs’ energy of (i —j)-system
containing the parameters of interaction between compo-
nents i and j. Their most reliable values resulted from

treating many measurements are found in available litera-
ture [17-32] and collected in Table 2. Using them, the ac-
tivity coefficients y, as functions of mole fractionsx, are
expressed from Eq. (4) added by the Gibbs’~Duhem rela-
tions [16]. Then common formulae are derived for arbi-
trary composition

N.-1 ex L i=j
i=1,...,NC—1:RT1ny,=AG"X+Z(§U.—xj)aAG ’5,,:{ '=J
j=1

Ox,
. N.-1 OAGE N.-1
RTIny, =AG* —ij - =1—be,.
j= J j=
(6)

Last equations in (6) follow from taking into account the
fact that there are only (V, —1) independent components in
N _-system. Emphasize that AG* via the parameters listed
in Table 2 depends on all binary interactions between solu-
tion components including a co-solvent (see Eq. (6)) that in-
fluences the carbon solubility through activity coefficients
in Eq. (2) which represents the equilibrium condition of the
reaction (1). Expressions of vy, are substituted in Eq. (2)
where the standard Gibbs’ energy of dissolved carbon p("
is defined from the equilibrium condition between the pure
silicon melt and the SiC crystal

M(cl) = “S;)C - Hg[) - {RTln I::}\,S[ (1 —Xc )] + RTln(“A/C)ACC )} .
(7

Here, ¥, ¥, and x, describe the Si-C solution. A temper-

ature dependence of the carbon solubility in the molten sil-

icon equilibrated with the silicon carbide are presented in
Ref. [33] through dimensionless mass fraction
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Table 2. Binary interaction parameters of excess Gibbs energy description.

AG”, = xixfg(kaifj + kbiffT)(xi —x,)k , J'mole™!

i ‘a,_;°b,_, 'a,_ ;'b_; ‘a, 3%, ‘a,_;°b,_, Refs.
Cr=Si —119216.57; 16.11445 —47614.70; 12.17363 0.00; 0.00 0.00; 0.00 [17]
Fe-Si —151127.73; 29.125 —33882.38;2.5015 33954.71; 11.2555 21289.56; 0.865 [17]
Si—Ti —255852.17; 21.874 25025.35;-2.0023 83940.65; —6.7152 0.00; 0.00 [17]
Co-Si —183483.8; 34.80023 —3219.5; —-15.28341 34241.7; 0.00 15579.7; 0.00 [18]
Ni—Si —208402.55; 27.13099 —121913.40; 18.80198 0.00; 0.00 145580.2; -69.55691 [19]
Si-Y —231878.58; 0.00 —22570.43; 3.00 75072.9; -26.56 0.00; 0.00 [20]
Sc—Si —233581;-22.8 —25537;0.00 71642; 0.00 0.00; 0.00 [21]
Al-Si —11340.1;-1.23394 —3530.93; 1.35993 2265.39; 0.00 0.00; 0.00 [22]
La-Si —220000; 20.0 21500; 0.00 11000, 0.00 0.00; 0.00 [23]
Ce-Si —276530; 22.98 24173; 10.59 64797, 0.00 -20314.7; 0.00 [24]
Pr-Si —290000; 30 18000, 0.00 65000; 0.00 0.00; 0.00 [23]
C-Si 8700; 0.00 0.00; 0.00 0.00; 0.00 0.00; 0.00 [17]
C-Cr —127957; —7.6695 79574; 0.00 86315; 0.00 0.00; 0.00 [17]
C-Fe —124320; 28.5 19300, 0.00 49260; —19.0 0.00; 0.00 [17]
C-Ti —141051;-39.5 0.00; 0.00 0.00; 0.00 0.00; 0.00 [17]
C-Co —107940.6; 24.956 -9805.5; 0.00 0.00; 0.00 0.00; 0.00 [25]
C-Ni —111479; 35.2685 0.00; 0.00 0.00; 0.00 0.00; 0.00 [26]
Cc-Y -264500; —13.0 66000; 22.0 0.00; 0.00 0.00; 0.00 [27]
Al-C 40861.02; -33.21138 0.00; 0.00 0.00; 0.00 0.00; 0.00 [28]
C-La —259436.3; 30.0 —159860; 0.00 —44046.6; 0.00 0.00; 0.00 [29]
C-Ce —268285.3;22.2 —139372.9; 0.00 —24515.3;0.00 0.00; 0.00 [24]
C-Pr -206169.6; -29.9 —127621.8; 0.00 -26606.5; 0.00 0.00; 0.00 [29]
C-Nd —268285.3; 22.227 132872.9; 0.00 —24515.3;0.00 0.00; 0.00 [30]
AGy_y, = %x&.xw (SS[Nd + €9 X T Egsisis s T Enavana T Enavavava ), J-mole!
€ siNa Esisi> Esisisisi € Nad > € NaNaNaNd Zsina
Si—Nd —57739.2 + 8.368T 27196 + 10.46T; —12552 + 6.276T; 6 [31]
2092 - 5.0208T 3138
AGy o = xg.Xe (Lgxg, + Lexe + Lo oxg.Xc ), J-mole™!
Ly, Le L.
Se—C -92308.9 — 9.55968T —213713 -9.55968T —104670 [32]

28400) ®

¢. =475.6exp| ———
7502

Substituting p” in (2) for ! from (7), one obtains the
final non-linear equation for calculating the carbon solu-
bility at arbitrary temperatures and compositions limited
by corresponding liquidus curves

RTIn(ygxg)+RTIn(y.x.)=RTIn[ 75 (1-%.)]
+RTIn({.%.). )

Eq. (9) is solved relative to the carbon mole fraction x,. by
iteration method with account of the mass action law ap-
plied to the chemical reaction (1). Roots of Eq. (9) give
the carbon solubility as a function of temperature and

composition. Note that Eq. (9) together with Egs. (5), (6)
and (8) is used in all further calculations of the carbon sol-
ubility (see Figs. 2 and 3).

The model above is verified by comparing the calcula-
tions with measurements performed for three different so-
lutions considered in Ref. [17]: 60%Si-40%Cr, 40%Si-
60%Fe and 77%8Si-23%Ti. The measured carbon solubil-
ity is plotted in Fig. 2 together with its estimate when SiC
is dissolved in the respective solution. As seen from the
plots, all calculated dependences fit fairly well with each
other and are consistent with the measurements for Si-Fe
and Si-Ti systems. However, there is a remarkable dis-
crepancy between estimates and measurements for Si-Cr
solution. In this connection, the authors of Ref. [17] em-
phasize that in the experiment for a Si-Cr solution at
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A Measurements in [17]
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Fig. 2. Comparison of carbon solubility presented in Ref. [17]
and independently calculated in the present work.
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2073 K, the temperature decreased presumably within
100 K after immersing a SiC plate. With account of this
fact, the calculated curves satisfactorily reproduce the
measured values although the solubility seems to be over-
estimated. Therefore, it can be assumed that the thermo-
dynamics of non-ideal solutions is acceptable for estimat-
ing the carbon solubility in other Si-Me systems.

2.3. Carbon solubility in binary solutions Si-Me,
Me = Cr, Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd and Sc

By applying the thermodynamic approach described in Sec-
tion 2.2, the carbon solubility was calculated for the binary
solutions saturated with SiC at temperatures and composi-
tions varying in a wide range limited by liquidus curves.
Fig. 3 shows the temperature dependence of carbon solubil-
ity at co-solvent percentages of 40, 50, 60 and 70 mol.%.
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Fig. 3. Carbon solubility in binary liquid alloys equilibrated with SiC crystal vs temperature at co-solvent percentage of 40% (a), 50% (b),
60% (c) and 70% (d). Limitations of liquidus curve are accounted for (see Fig.1).
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As it follows from the plots, the temperature elevation en-
hances the solubility, whereas its average level rises approx-
imately twice with co-solvent percentage.

Two groups of high and low solubility can be distin-
guished. Silicon melt doped by Cr, La, Ce, Pr, Nd, Y and
Sc is attributed to the first of them where depending on the
solubility the co-solvents are approximately distributed in
following sequence:

- 40%: Y (> 1979 K), Pr (> 1889 K), Nd (> 1978 K),
Ce (> 1987 K), La (> 1959 K), Cr (> 1698 K);

- 50%: Pr(>1942K), Y (>2155K), Ce (> 1906 K),
La (> 1902 K), Nd (> 1953 K), Cr (> 1814 K);

- 60%: Pr(>1809 K), Ce (> 1753 K), Y (> 2113 K),
La (> 1793 K), Nd (> 1893 K), Sc (> 2317 K),
Cr (> 1932 K);

- 70%: Pr (> 1603 K), Ce (> 1527 K), La (> 1575 K),

Y (> 2053 K), Nd (> 1678 K), Sc (> 2228 K),

Cr (> 2028 K).
Here, the liquidus temperature in parentheses is shown for
each binary solution in accordance with the phase dia-
grams (see Section 2.1). Note that the addition of Y and
especially Sc results in a raised melting point. This param-
eter increases with Cr percentage. On the contrary, the
threshold value significantly decreases with elevating the
doping by lanthanides, making them most promising
fluxes.

The rest of co-solvents manifests itself at high percent-
age. For instance, 70% of Fe, Co, Ni and Al can provide
the solubility of 5—10% at temperature > 2300 K.

Particular attention should be given to a slope of solu-
bility dependences on temperature. The larger is a slope,
the steeper is a drop of solubility achievable between the
C-crucible and SiC-seed in TSSG [1] and, hence, a higher
growth rate. As it follows from comparing the plots in
Figs. 3a, b, ¢ and d, the variation in the slope with co-sol-
vent percentage is clearly manifested for lanthanides. The
slope decreases gradually, while a rise in the solubility
moderates. Sequentially, La possesses an advantage over
Pr, Pr does over Ce, Ce does over Nd. Therein, Y and Cr
turn out to be less preferable. Sc has a promising steep de-
pendence on temperature at its percentage of 60 and 70%
(see Figs. 3¢ and d) but is extremely limited by its liquidus
curve. As for other co-solvents, there is a sense in consid-
ering them at their elevated doping when providing a no-
ticeable solubility of carbon. Among them, Al demon-
strates an outstanding slope at temperature varying from
2100 to 2400 K.

2.4. Preliminary estimation of SiC growth rate
The analysis above allows one to speculate that such be-

havior of the slopes can lead to saturation in the growth
rate with doping. To get a deeper insight into the main

trends within a simplified approach, SiC growth rate is cal-
culated between two parallel infinite plates playing a role
of the C-crucible and the SiC-seed kept at different tem-
peratures. By taking into account for the mass transport
only due to diffusion, the flux of carbon J. can be esti-
mated as

-Co
JC — _pDC ,seed C,crucible , (10)

where p is the solution density, D,. is the diffusion coeffi-
cient of carbon, C. ,,, and C .., are the equilibrium
mass fractions of dissolved carbon at the seed and the cru-
cible, respectively; A is the fitting parameter in meters.
The solution density p is defined as

N, -1
15 G a1
p =P

To evaluate the diffusion coefficient of carbon, the
Stokes-Einstein-Sutherland equation for diffusion of
spherical particles through a liquid with low Reynolds
number [16,34] is applied

RT

= 12
N, 61 (12)

C

where N, = 6.023-10% kmole ™ is the Avogadro number,
7. is the radius of the spherical particle equal to 67 - 10 m
for the carbon atom [35], 1 is the viscosity coefficient of
solution found according to the classic Arrhenius mixing
rule for liquid mixtures [36]

N, -1

Inm= > xInn, (13)
i=1

where 1, is the viscosity coefficient for i-th fluid compo-
nent when flowing as a pure fluid.
Then, the SiC growth rate can be estimated as

M. J
— SiC Y C_ (14)

oM ¢ Psic ,
where M. and M, are the molecular weights of carbon
and silicon carbide, respectively; py,. =3220 kg'm™ is the
SiC crystal density.

A large body of data on density and viscosity coeffi-
cient for the liquid silicon and the co-solvents investigated
here were carefully analyzed in available literature. Their
most reliable temperature dependences are collected in
Tables 3 and 4. The sources corresponding to them are
marked as first in reference list. Other sources remain as
alternatives. Note that the temperature functions of density
and viscosity coefficient are fitted in such a way as to
agree their values (see third column of the tables) with
those at melting point (see the second column) measured
accurately enough in many cases. In addition, due to a lack
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Table 3. Density of pure liquid substances.

p,(T)zpf(Tmf)_Ci (T_sz')
! T, K p.(T,), kg/m’ C,, kg/(m* -K) References
Cr 2180 6290 0.72 [37]
Fe 1811 7034.96 0.926 [38]; [391, [37]
Co 1768 7827 0.936 [407; [39]1, [37]
Ni 1728 7890 0.991 [417; [39], [37]
Y 1796 4150 0.21 [42]; [43]
Sc 1814 2770 0.21052 [44]; [43]
Al 933 2380 0.35 [37]; [38]
La 1191 5940 0.61 [43]; [45], [46], [37]
Ce 1068 6412.492 0.831 [47]; [48], [37]
Pr 1204 6500 0.51 [46]; [43], [37]
Nd 1294 6585 0.57 [45]; [43], [48],[37]
Si 1685 2530 0.35 [371; [49], [50], [40], [51]

Table 4. Viscosity coefficient of pure liquid substances.

B,
AT)= A, !
()= exp| 5 |

i T.. K N,.» MPa-s A, mPa-s B,, kl/mole References

Cr 2180 5.7 0.172772 63.368 [52]; [53], [54]

Fe 1811 5.8667 0.184696 52.071 [52]; [53], [38], [54]
Co 1768 5.18 0.1893374 48.64345 [52]; [53], [40], [54]
Ni 1728 4.78 0.252614 42.244 [52]; [53], [541, [55]
Y 1796 4.54 0.00287 110 [42]

Sc 1814 2.65 0.23636 36.4514 [53]

Al 933 1.38 0.2565 13.08 [53]; [38], [54]

La 1191 2.66 0.2092 2522 [53]; [46]

Ce 1071 3.25 0.6748 13.97 [53]; [47], [54]

Pr 1204 2.85 0.9359 11.18 [53]; [46]

Nd 1294 3.19 0.351253 23.7357 [53]; [46]

Si 1685 0.58 0.1187 2225 [52]; [49], [50], [40], [54], [53], [56]

of unambiguous information, the viscosity coefficients for
liquid Cr, Fe, Co, Ni and Si are found from treating the
experimental results presented in Ref. [52] while only an
approximate value for liquid Sc is managed to calculate by
the method suggested in Ref. [53].

The densities and viscosity coefficients calculated from
formulae in Tables 3 and 4 are shown in Figs. 4 and 5 as
functions of temperature varying from melting points to
2400 K. It follows from the plots that the density decreases
linearly and gradually with temperature in the range of
5000-8000 kg/m® for Ni, Co, Fe, Cr and lanthanides,
whereas Sc, Si and Al possess considerably lower density
of 2000-3000 kg/m®. In this connection, Y mediates be-
tween Sc and La.

Unlike the density, the viscosity coefficients exhibit
a non-linear behavior. Cr turns out to be a most viscous

co-solvent. Fe, Co and Ni follow Cr, demonstrating a
steep drop in this property. Lanthanides form a separate
group with a moderate dependence of viscosity on tem-
perature where La is a least viscous co-solvent. Al and Si
possess the lowest viscosity coefficients. Y is interposed
between Ni and La and shows a sharpest fall with tem-
perature varying from Y-melting point to 2400 K. Fi-
nally, Sc viscosity coefficient is higher than that of Pr
and lower than that of Ni.

The properties discussed above are introduced into
Eqgs. (11) and (13) to calculate the carbon flux and the SiC
growth rate by using Egs. (10) and (14) at temperature and
Si-Me composition varying in a wide range. Obviously,
within the simplified approach accounting for only the
carbon diffusion, there can be no aim and no possibility to
reproduce the available experiments. Nevertheless, by
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Fig. 4. Density of pure substances in Si-Me liquid alloys, where
Me = Cr, Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd, Sc. Limitations of
liquidus curve are accounted for (see Fig. 1).

comparing one with other, the effect of different co-solvents
and main trends are expected to be revealed. In this connec-
tion, to agree the calculations with experiment, the unde-
fined parameter A in Eq. (10) is chosen to obtain the growth
rate of 200 um/h at 2100 K and 60%Si-40%Cr as shown in
Ref. [1] and is kept the same for other compositions.

Fig. 6 illustrates the estimated growth rate as a func-
tion of the co-solvent percentage at 2000, 2100, 2200 and
2300 K, while for the sake of definiteness, the temperature
drop between seed (top) and crucible (bottom) is set equal
to 10 K. As seen from the plots, the growth rate increases
noticeably with temperature for all co-solvent except for
Ni with its lowest level (long dashed red) exceeding that
in pure silicon melt (solid green) only at Ni-doping of 60%
and higher.

A similar behavior can be observed in the case of Sc
(black solid). The growth rate here is predicted to be even
lower than that in the silicon. It rises abruptly to = 350 um/h
at 2300 K when Sc percentage becomes higher than 50%.
Note that as it follows from Si-Sc liquidus line (see Fig. 1),
2300 K is not enough to provide Si-Sc liquid solution at Sc
percentage of 60—-65%.

Depending on temperature, 50-250 pm/h can be
achieved at the addition of Fe (dashed dot dot red) and
Co (dashed dot red) when their content becomes higher
than 60%. In Si-Cr solution (solid red) the growth rate
reaches a local maximum of 150-250 um/h that slightly
shifts to the left with Cr fraction. Y (dashed red) gives
the growth rate considerably higher than that for the pre-
vious co-solvents. It peaks at about 35% Y and tops
~ 200 um/h at 2000 K and ~ 400 pm/h at 2300 K.

As compared with others, lanthanides demonstrate
highest growth rates. They are close to each other at La
(solid purple) and Ce (dashed dot dot purple) and lower

6

Viscosity, mPa s

- R -
1500 2000
Temperature, K

0 |

1000 2500

Fig. 5. Viscosity coefficient of pure substances in Si-Me liquid
alloys, where Me = Cr, Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd, Sc.
Limitations of liquidus curve are accounted for (see Fig. 1).

than that at Pr (dashed dot purple) when their percentage
varies from 5 to 40%. In elevating the doping, the growth
rate is saturated firstly at Pr, next at Ce and then at La.
Therewith, La addition gives the greatest maximum in the
growth rate while less amount of Pr and Ce is required for
this. Note that the maximums shift a little bit to the left
with temperature. In other words, to achieve the higher
growth rate, the lower doping is needed at elevated tem-
peratures. As for Nd, the growth rate here (long dashed
purple) exceeds those of La and Ce when the doping is
limited by 30-40% and is considerably lower when it is
higher. Unlike other co-solvents, the local maximum is
less pronounced in the dependences at Nd as well as at Cr.
Surprisingly, the growth rate increases monotonically
with Al (solid blue) addition. It is remarkably lower than
that of Cr, Nd, Ce, Pr, Y and La when the mole fraction of
co-solvent does not exceed 40% and is predicted to
achieve significant values at larger doping.
The results obtained allow one to make up some pre-
liminary conclusions:
- SiC growth rate increases with temperature in all cases
considered;
normally, SiC growth rate begins to saturate at a certain
mole fraction of co-solvent and can no longer be raised
by elevating the doping, then it falls down; such behav-
ior is consistent with some experimental data mentioned
in Ref. [1] for Si-Cr solution;
- local maximum in the growth rate dependence on co-sol-
vent percentage shifts to the left with temperature;
- on the contrary, SiC growth rate rises monotonically
with Al-addition;
- a maximum possible growth rate is predicted to be pro-
vided by La-addition, and further in decreasing order -
by Pr, Ce, Y, Sc, Nd, Cr, Co, Fe and Ni;
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Fig. 6. Preliminary estimation of SiC growth rate in binary liquid alloys vs co-solvent percentage at seed temperature of 2000 K (a),
2100 K (b), 2200 K (c) and 2300 K (d) for temperature drop of 10 K. Gap in some dependences results from limitations of liquidus

curve (see Fig. 1).

- a higher growth rate is achieved at lower content of Pr,
Y, Nd and Cr (<30%) than at La and Ce.
From above comparison of growth rates, the most prom-
ising are La, Pr, Ce, Y, Nd and Cr. To support the specula-
tion, more realistic 2D simulation should be carried out.

3. EXAMPLES OF 2D SIMULATION OF SiC TSSG

CGSim software developed by STR Group [57] is em-
ployed for 2D simulation of SiC TSSG. Modeling analog
of the reactor with the seed diameter of 18 mm is consid-
ered thereto. Its schematic is shown in Fig. 7.
Thermophysical properties of solid and gas blocks
(Materials) are taken from STR data base [57] while those

of melt are user-defined and collected in Tables 3—7. Note
that the density and viscosity coefficients of solutions are
calculated as described in Section 2.4 while their heat ca-
pacity (C,), thermal (1) and electrical () conductivity are
given by following expressions from Refs. [77], [78] and
[79], respectively,

N, -1
C,=> xC,, (15)
i=1
N, -1
A=) Ch, (16)
i=l1
N, -1
o= Z X,C;. (17)
i=1
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Fig. 7. Schematic of simplified set-up for simulation of SiC TSSG by CGSim software. “Top” and “Bottom” in the schematic are
points where target temperatures are preset.

Table 5. Thermal conductivity of pure liquid substances. Table 6. Electrical resistivity of pure substances.
L =C,+C,(T-T,) i T.,K R,pQ-cm Refs.
; T, K C,WmK C, WmK® Reb, Cr 2180 126 [67]
Fe 1811  9.7;138 [68]; [67]
Cr 2180 46 0.0 [58] Co 1768  6.0;115 [69]; [67]
Fe 1811 36.349 0.0096207 [59] Ni 1728 63 +0.0127T; 83 [37]; [67]
Co 1768 29.49359 0.08781 [60] Y 1796 57 [70]
Ni 1728 54.182 0.02097 [59] Se 1814 55 [71]
Y 1796 17.2 0.0 [61] Al 933 24.2,10.7+0.0145T;24.8 [37]; [58]
Se 1814 15.8 0.0 [62] La 1191 138+ 0.065 (T— 1193); [72]
Al 933 98 0.0 [58] 135+ (0.0170 + 1.48-10°°T)x
La 1191 13 0.0 [63] (T-1187) [73]
Ce 1068 20.496667 0.0126614 [64] Ce 1068 127+ (0.0176 + 1.7-10°6T)x [73]
Pr 1204 25.082333 0.0111794 [65] (T-1070)
Nd 1294 21.719799 0.0117000 [66] Pr 1204 70; [74]
Si 1685 66.5 0.0 [57] 139 + (0.0186 + 1.93-1057)x
(T-1207) (73]
Nd 1294 64; [75]
Here C,, A, and o, are the heat capacity, thermal and 154+ (0.0144 + 1.13-10-°T)x
electrical conductivity of i-th pure component in solu- (T—1292) (73]
tion, respectively. Si 1685  0.113T—109 [57]
By tuning the power of inductive heater, the coupled 01137—113 [37]

computation of heat and mass transport are carried out in
such a way as to provide the target temperatures at points
marked by “Top” and “Bottom” in Fig. 7.
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Table 7. Molecular weight and heat capacity of pure liquid
substances (taken from Ref. [76]).

i M., kg/kmole C,;» J/mole/K
Cr 52 39.33
Fe 56 46.024
Co 59 40.501
Ni 59 43.095
Y 89 43.095
Sc 45 44.225
Al 27 31.748
La 139 34.309
Ce 140 37.698
Pr 141 42.970
Nd 144 48.785
Si 28 27.196

As it follows from some experimental observations
[80], SiC layer can cover the crucible wall due to the reac-
tion between liquid silicon and graphite. Consequently,
carbon goes from the crucible wall and diffuses through
SiC layer. This layer is dissolved, providing carbon
spreading into the solution. The thickness of SiC layer is
supposed to remain constant after the initial stage of
growth process. Therefore, the expression of the dissolu-
tion rate of SiC layer is accepted the same as that of crystal
formation. Then, the same boundary conditions can be set
at both graphite wall and silicon carbide seed with differ-
ent kinetic constants. More detailed description can be
found in CGSim manual [57].

The chemical model above is tuned by fitting the prob-
ability of carbon and silicon sticking at the seed and the
graphite crucible to agree the computations with the ex-
perimental dependence of growth rate on the temperature
drop between the top and the bottom [81]. The obtained
results are illustrated in Fig. 8. Accounting for the lack of
detailed information on the reactor design and the process
conditions used by the authors of [81], the computations
are reasonably consistent with the experiment. To collate
the influence of various co-solvents, the same probability
of sticking is set in all further computations.

As an example, two typical distributions of tempera-
ture (left) and carbon mass fraction (right) in silicon melt
doped by 40% Cr and 40% La are demonstrated in Fig. 9
at top and bottom temperature of 2300 K and 2310 K, re-
spectively. To illustrate the pattern of melt flow, the ve-
locity vectors are plotted in the left part of the figure. Some
difference in the distributions is due to that in properties
of the considered solutions. As it can be seen, Si-La solu-
tion is heated up deeper and “hot tongue” from the cruci-
ble wall is longer than that for Si-Cr. Stagnation zones
near the seed and the crucible bottom are predicted to be
larger for Si-Cr solution that affects the distributions of
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Fig. 8. Comparison of SiC growth rate given in Ref. [81] and ob-
tained in the present work from 2D computations at bottom tem-
perature of 2313 K and temperature drop of 10, 20, 30, 40 K be-
tween top and bottom.

2310K

(b)

Fig. 9. Temperature and carbon distribution in silicon melt
doped by 40% Cr (a) and 40% La (b). Top and bottom tempera-
ture of growth crucible is 2300 K and 2310 K, respectively. Ar-
rows indicate the velocity vectors and illustrate the melt flow.

carbon mass fraction. Slot-like non-uniformity in carbon
distribution close to the center turns out to be more ex-
tended from the seed to the bottom for Si-La solution. On
the other hand, the relative variation of carbon mass frac-
tion is lower in Si-Cr solution (1.2% vs 2.6%) in spite of
the fact that its level is higher than that in Si-La solution
(0.029 vs 0.018). Note that the sharp gradient of the mass
fraction is located at the seed-melt interface whereas its
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value is close to its maximum at the crucible wall and is
approximately constant over the rest of the volume. Hence
one can suppose that the crystal growth occurs under ki-
netic limitations despite high temperatures. Support for
this comes also from the dependence in Fig. 8.

Radial distributions of the growth rate are shown in
Fig. 10 for 60%Si-40%Cr,La and 30%Si-70%Cr,La solu-
tions at the same temperature regime. As is seen from the
plot, the growth rate is significantly higher at La-doping
than that for Cr. In addition, in both cases the crystal sur-
face is expected to be rough at 40% doping while a prac-
tically convex crystal can be obtained by elevating Cr and
La percentage to 70%. Note that the growth rate decreases
with the doping considered. This agrees with the result
presented in Section 2.4 (see Fig. 6) where the possible
saturation in the growth rate is predicted.

4. SUMMARY

Sequential and comparative computational research is

suggested to find out the effect of various co-solvents on

SiC crystal growth rate from silicon melt. The information

related is thoroughly analyzed and collected, including

- phase diagrams;

- interaction parameters in approximation of the excess
Gibbs’ energy;

- thermodynamic method of calculation of carbon solubil-
ity;

- thermophysical properties and heat and mass transport co-
efficients;

- kinetic chemistry at melt-solid surfaces.

Limitations attributed to liquidus-solidus of 11 binary
solutions are shown and taken into account for further
computations. Carbon solubility is calculated at tempera-
ture and composition varying in a wide range. Most prom-
ising solutions are preliminarily revealed. The growth rate
is estimated within the simplified approach. 2D problem
is set by using CGSim software, and first 2D computations
are carried out, demonstrating the applicability of the
model.

Further research is aimed at simulation and compari-
son of all binary solutions and analysis of results to opti-
mize the solvent design.
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YK 538.91+539.374.1

YuceHHBII aHAJIU3 pocTa Kapouaa KPeMHHUS U3 pacijaBa KpeMHHUs,
paszoasJsennoro Cr, Fe, Co, Ni, Y, Al, La, Ce, Pr, Nd u Sc. Hacts 1

A.H. Bopo0neB'*

TAO «I'PYIIIA CTP» — 000 «Codr-ummakr», Bonbiuoit Camnconuesckuii np., 64 murepa «E», opuc 603, Cauxr-Tlerepoypr,
194044, Poccus
2 HITO «Crexio u kepamukay, yi. Jlyako, 3, Cankr-IlerepOypr, 192029, Poccus

AunHoTanus. Bnusaue Ppa3IM4YHbIX MPHUCAAOK Ha CKOPOCTb POCTa KPUCTAIIIMICCKOTO Kap61/ma KpEMHUA U3 pacTBOPOB IOCIECAOBA-
TEJIbHO aHAJIU3UPYETCA B paMKaX YUCJIICHHOI'O ITOAX0Aa. I/IH(i)OpMaHI/ISI, OTHOCAIIAACA K HpO6JIeMe, HaiiJIeHa B UMEIOIIEHCS JuTeparype
1 TIIATCJIBHO nepepa60TaHa. OFpaHH‘IeHI/Iﬂ, CBSI3aHHBIC C JTUHUEH TUUIaBJICHUA-3aTBEPACBAHUA PACTBOPOB, OIPEACICHBI U3 (basom,lx
JAuarpamMm 11 6I/IHaprIX CHUCTEM U YUYHUTBIBAIOTCA B pacqéTax PACTBOPUMOCTH yIjIepoaa 1npu M3MCHECHNU TEMIIEPATyphbl U COCTaBa B
HIUPOKUX Opeaeiax. DusndecKue cBOWCTBa U K03(1)(1)I/H_II/IGHTLI rnepeHoca C06paHbI I Hpe[[BapPITeJILHOfI OLCHKHU U COIIOCTaBJICHHUS
CKOpOCTeﬁ pocTa. HpeIICKa?)bIBaeTCSI UX HACBIICHUE U IMOCICAYIONIEC NMaICHUE C YBCIIMYCHUEM COACPIKaHUS ITPUCATOK. q)OpMyJII/Ipy-
€TCA ABYXMEpHad 3a/lada, 1 I€MOHCTPUPYIOTCS IIEPBLIC IBYXMEPHBIC paC‘IéTbI. HOKa3bIBaeTC$I, 4uTo Z[O6aBIIeHI/Ie JIaHTaHa K pacIuiaBy
KpEMHUSL obecrieunBaeT CYHIECTBEHHO 60III)HIyIO CKOPOCTb pOCTa, 4€M IIpU Z[O6aB.IIeHI/II/I Xpoma.

Kniouesvie cnosa: poct kapOua KpeMHUS; PacIiaB KpEMHHST; pacTBOP; pacTBOpUMOcTs yriiepona; MPK (MozxenupoBanue pocra
KPHCTAJIOB)

Reviews on Advanced Materials and Technologies, 2024, vol. 6, no. 2, pp. 47-61



